Design and Implementation of Compensator for Optimizing Linear Time Invariant System Parameters

نویسنده

  • Harikrishna Paik
چکیده

Most of control systems in vogue are Linear Time Invariant (LTI) systems and are characterized by several parameters such as settling time, over shoot and rise time etc. Optimization of these parameters is required to meet the desired system response and smooth operation of the system. In this paper, an optimization based compensator is designed and implemented for a closed loop LTI system and the system response is observed both in time and frequency domain. The compensator is designed using optimization technique so that the control system meets the system specifications. The LTI system model consisting of gain, limited integrator and a delay unit is considered for optimization. The controller is tuned using Ziegler-Nichols open loop tuning algorithm to optimize mainly settling time, rise time and percentage of over shoot. The feasible and optimal solutions within the specified tolerances of these parameters are obtained and presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PD Controller Design with H¥ Performance for Linear Systems with Input Delay

This paper presents H∞ control problem for input-delayed systems. A neutral system approach is considered to the design of PD controller for input delay systems in presence of uncertain time-invariant delay. Using this approach, the resulting closed-loop system turns into a specific time-delay system of neutral type. The significant specification of this neutral system is that its delayed coeff...

متن کامل

Robust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties

In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Time-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection

Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...

متن کامل

On the synthesis of time-varying LQG weights and noises along optimal control and state trajectories

A general approach to control non-linear uncertain systems is to apply a pre-computed nominal optimal control, and use a pre-computed LQG compensator to generate control corrections from the on-line measured data. If the non-linear model, on which the optimal control and LQG compensator design is based, is of sufficient quality, and when the LQG compensator is designed appropriately, the closed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013